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Abstract

This paper addresses three important aspects, neglected in all previous literature, of the micromechanics of nanocomposites reinforced by
platelet-shaped fillers. (a) A model was developed to predict the buckling of platelets in reinforced materials under compressive loading. This
model predicts a critical strain above which platelet buckling, and hence a reduction in the compressive modulus relative to the tensile
modulus, would be expected to occur. It was used to show that compressive modulus should not be reduced relative to tensile modulus in a
typical polypropylene nanocomposite. (b) A model was developed to account for the reduction of the reinforcement efficiency of clay
platelets of high aspect ratio in a polymer matrix as a result of the incomplete exfoliation of platelets into ‘pseudoparticle’ stacks containing
polymer layers sandwiched between successive clay platelet layers rather than into individual perfectly exfoliated and well-dispersed
platelets. It was shown that incomplete exfoliation has a very significant detrimental effect on the reinforcement efficiency. (c) A model
was also developed for the reduction of the reinforcement efficiency as a result of the deviation of the platelet orientation from perfect biaxial
in-plane. It was shown that the deviation of the platelet orientation from perfect biaxial in-plane also has a very significant detrimental effect

on the reinforcement efficiency. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Nanocomposites consisting of highly anisotropic clay plate-
lets dispersed in a polymeric matrix material [1-16] are of
interest for many important industrial applications. For exam-
ple, polypropylene nanocomposites are currently under devel-
opment for automotive fascia. The platelet-shaped clay
nanofillers have thicknesses of ~1 nm. Their aspect ratios
(defined as diameter/thickness) can range from 10 to 1000.
Their elastic (Young’s) moduli are ~10? times those of typical
a thermoplastic or thermoset, and ~ 10> times those of a typical
elastomer. The platelets occur naturally in stacks. These stacks
must be torn apart (in other words, ‘exfoliated’), to disperse
them in the polymeric matrix as highly anisotropic nanofillers.
The dispersion of such platelets improves many important
properties, including the elastic moduli, relative to the poly-
meric matrix materials.
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The development of nanocomposite technology presents
many scientific challenges. A better fundamental understand-
ing, and the ability to make predictions, are very important in
accelerating the development of this technology. In particular,
theory and simulations are especially useful in addressing the
following three key research challenges:

e Thermodynamics and kinetics of exfoliation. This challenge
is at the heart of the development of nanocomposite tech-
nology. Both the processing characteristics of the suspen-
sions of clay platelets in polymers and the final properties of
the fabricated articles made from these suspensions depend
on the exfoliation and dispersion of the platelets. There is a
significant amount of ongoing research in this area. For
example, see Vaia and Giannelis [17,18] and Balazs et al.
[19,20].

® Rheology of dispersions of clay platelets in molten poly-
mers. The main objective of work in this area is to help
optimize the processing characteristics during fabrication.
The shear viscosity is of special interest. For example, see
Bicerano et al. [21].

e Elastic properties of nanocomposite fabricated articles.
Nanocomposite mechanics is not yet well-understood.
This manuscript addresses, by developing analytical
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(closed-form) solutions for the elasticity equations, what
we consider to be the three most important aspects of the
micromechanics of nanocomposites reinforced by platelet-
shaped fillers that have been neglected in all of the previous
literature.

Micromechanical methods use simplified geometries, thus
neglecting complex geometrical features which could poten-
tially be taken into account in numerical solutions of the elas-
ticity equations by finite element simulations. They assume
perfect adhesion (perfect load transfer) between the compo-
nents in a composite, thus also neglecting interfacial phenom-
ena, which could potentially be taken into account by
mesoscale simulations. Nonetheless, they are extremely
useful. Since the calculations are instantaneous, they provide
the ability to assess rapidly the key factors controlling the
elastic behavior, and to explore very large design spaces.
Since the equations have closed-form solutions, the results
can be related readily to geometrical and physical factors
considered in the model.

The results reported in the remainder of this manuscript
can be summarized as follows:

¢ A model was developed to predict the buckling of plate-
lets in reinforced materials under compressive loading.
This model predicts a critical strain above which platelet
buckling, and hence a reduction in the compressive
modulus relative to the tensile modulus, would be
expected to occur. It was used to show that the compres-
sive modulus should not be reduced relative to the tensile
modulus in a typical polypropylene nanocomposite.

e A model was developed to account for the reduction of
the reinforcement efficiency of clay platelets of high
aspect ratio in a polymer matrix as a result of the incom-
plete exfoliation of platelets into ‘pseudoparticle’ stacks
containing polymer layers sandwiched between succes-
sive clay platelet layers rather than into individual
perfectly exfoliated and well-dispersed platelets. It was
shown that incomplete exfoliation has a very significant
detrimental effect on the reinforcement efficiency.

e A model was also developed for the reduction of the
reinforcement efficiency as a result of the deviation of
the platelet orientation from perfect biaxial in-plane. It
was shown that the deviation of the platelet orientation
from perfect biaxial in-plane also has a very significant
detrimental effect on the reinforcement efficiency.

2. Prediction of threshold for decrease in compressive
modulus relative to tensile modulus

2.1. Model development
Although dispersed clay platelets have a very high intrin-

sic stiffness (tensile moduli of ~10° MPa), their high aspect
ratios induce large bending moments so that they manifest

considerable flexibility [21]. Will a composite using fillers
of high aspect ratio exhibit an enhanced compressive modu-
lus in addition to an enhanced tensile modulus? To answer
this question, we developed a model to predict the critical
strain at which the compressive modulus of a composite
reinforced by flexible filler particles begins to deviate
from the tensile modulus. The model predicts the critical
strain in terms of the moduli of the matrix and filler materi-
als, and the volume fraction of filler. This section
summarizes the model development and the results of illus-
trative calculations of the critical strain for dispersions of
platelet-shaped filler particles in a typical grade of poly-
propylene (PP).

The overall strategy in developing the model was to write
the elastic strain energy function for the composite material
in terms of the physical properties of the matrix and the
filler, the imposed strain, and the wavelength of any buck-
ling of the composite material. The behavior of the strain
energy function was then examined to see under what
circumstances the low-energy conformation was the linear
compression of both the matrix and the filler (which
produces a compressive modulus equal to the tensile modu-
lus), and under what circumstances buckling would occur
(reducing the compressive modulus). This strategy is similar
to an approach used to predict the failure of sandwich panels
under compressive loading [22], a common reference in
materials books which touch on the subject of compressive
loading of composites [23].

In the derivation below and the illustrative application
that follows it, the bulk material properties of the matrix
polymer were used to represent this material. This is,
strictly speaking, an approximation because of the effects
of the large interfacial area and the nanoscale dimensions
in nanocomposites. Such issues will be addressed in
considerable detail in Section 5. It suffices to state, at
this point, that we believe that taking these factors into
account (which would require a large amount of addi-
tional work) is very unlikely to change the qualitative
conclusions that are reached in this section concerning
the threshold for the decrease in the compressive modu-
lus relative to the tensile modulus.

In examining the behavior of materials reinforced with
platelet-shaped filler particles, we made some assump-
tions to make the calculations easier and to provide a
reasonable lower bound for the critical strain at which
the compressive modulus begins to deviate from the
tensile modulus. Since our lower bound showed a very
high critical strain for the case of greatest interest to us,
there was no need to refine these assumptions. These
assumptions are that (1) the composite stores energy
via compression of filler and matrix, as well as shear
of the matrix if the filler buckles; (2) filler particles
are initially aligned with the applied load; and (3) that
initial filler buckling would result in composite deforma-
tion that follows a sinusoidal pattern. With these assump-
tions, the detailed derivation of the critical strain,
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Fig. 1. If exfoliation is incomplete, we can consider the system as a compo-
site which consists of a matrix and ‘pseudoparticles’ which are incomple-
tely exfoliated stacks of individual platelets. The Halpin—Tsai equations
can then be applied to this model system, which is depicted schematically in
this figure. The solid lines represent platelets within incompletely exfo-
liated stacks. The dashed rectangles illustrate where the boundaries of a
pseudoparticle are drawn to apply the Halpin—Tsai Equations in a general-
ized form.

contained in Appendix A, results in the relation:

_ Gmatrix(1 - ¢)

€crit
Efitjer @

:(Ematrix>( 1 )(1 —¢)
Eﬁller 2(1 + Vmatrix) d’

where G 1S the matrix shear modulus, Efy, is the
filler Young’s Modulus, and ¢ is the volume fraction
filler.

2.2. Example

The critical strain for the onset of filler buckling in a PP
nanocomposite containing 5% filler by volume will now be
computed. For this system,

Epasix 1360 MP
marx __1300MPa__ ;)3
Efil]er 100 000 MPa

1
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1- 1 —0.05
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eqic = (0.0136)(0.357)(19) = 0.09

This strain is quite large. The matrix stress corresponding
to this strain, 95.2 MPa, is far greater than the elastic limit of
the PP matrix, 25 MPa. This result shows that the PP matrix
will undergo plastic deformation before the filler starts to
buckle, so that the elastic compressive modulus will not be
reduced relative to the elastic tensile modulus.

On the other hand, filler buckling would be far more
likely to occur in a soft elastomeric matrix where the ratio
E aiix/Esiner 18 roughly three orders of magnitude smaller
than that calculated above for the stiff thermoplastic PP
matrix.

3. Prediction of effects of incomplete exfoliation on
tensile modulus

3.1. Model development

It is obvious from electron micrographs that one often has
incompletely exfoliated stacks of platelets, containing some
organocation and/or matrix polymer between the platelets in
each stack. Such stacks can contain several platelets, and the
platelets within a stack can be at various distances from each
other. An important issue, which may have drastic effects on
the reinforcement efficiency, is the point in the interlayer
expansion of a stack with a given number of layers at which
a stack becomes a collection of separate exfoliated platelets of
high A; and Young’s modulus of E at a volume fraction of ¢,
rather than behaving like a single ‘pseudoparticle’. A pseudo-
particle would have a lower ‘effective’ aspect ratio A}
(because of stacking), and a lower Young’s modulus E’ as
well as a higher volume fraction ¢’ (because of its trapped
organic fraction). A standard technique of composite theory
that is used routinely to estimate reinforcement effects, the
Halpin—Tsai equations [25], will be modified below to account
for these effects.

In acompletely exfoliated system, the ‘continuum’ Halpin—
Tsai Equations can be applied to predict the modulus of the
composite material:

1—n¢ ’

Ecomposite _

E matrix

where Ay is the aspect ratio of the platelet (>1 if we define A;
as diameter divided by thickness for cylindrical platelets),
¢ is the volume fraction of platelets in the composite, and
is given by:

_ E -1
sy
where E, is the ratio of the platelet to the matrix modulus.

If exfoliation is incomplete, we can consider the system as a
composite which consists of a matrix and pseudoparticles
which are incompletely exfoliated stacks of individual plate-
lets. The Halpin—Tsai equations can then be applied to this
model system, which is depicted schematically in Fig. 1. Here,
the solid lines represent the platelets within incompletely exfo-
liated stacks, and the dashed rectangles illustrate where the
boundaries of a pseudoparticle are drawn to apply the
Halpin—Tsai Equations in the following generalized form:

1+ 245n'¢’ ' EL—1
—n¢ T E+2Ap

Ecomposite _

Ematrix

where A} is now the aspect ratio of the platelet stack, ¢’ the
volume fraction of platelet stacks in matrix, and E 'r is the ratio
of the modulus of the platelet stack to that of the matrix. In
Appendix B, each of these primed quantities is evaluated from
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Fig. 2. Effects of N (number of platelets per stack) and s/t (ratio of platelet spacing to platelet thickness in a stack) on (a) the aspect ratio, (b) volume fraction,
and (c) modulus ratio in the Halpin—Tsai equations, as ratios of the modified divided by unmodified terms.

the geometry of the stacks. The resulting set of equations are:
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3.2. Examples

Fig. 2 shows the effects of N (number of platelets per stack)
and s/t (ratio of platelet spacing to platelet thickness in a stack)
on the aspect ratio, volume fraction, and modulus ratio in the
Halpin—Tsai equations as ratios of the modified divided by

unmodified terms:

Fig. 2(a) is the ratio of the aspect ratio of the stacks to that of
individual platelets (A{/A;). Both N and s/t play important
roles. As more platelets are incorporated into a stack, or as
platelet spacing increases, the aspect ratio of the stack falls.
Fig. 2(b) is the ratio of the volume fraction of platelet stacks
to that of individual platelets (¢'/¢b). Again, both N and s/t
play important roles. As more platelets are incorporated
into a stack, or as platelet spacing increases, more matrix
material is incorporated into the stacks, and the volume
fraction of the stacks increases.

Fig. 2(c) and (d) show the ratio of the stack modulus to the
platelet modulus (E/E,, with matrix modulus cancelling).
Although the structure of the equations suggests that the
results might vary as the platelet modulus ratio (E,) is
changed, the plots at E. = 100 [typical order of magnitude
for inorganic platelets dispersed in a rigid (thermoplastic or
thermoset) matrix] and E, = 100000 [typical order of
magnitude for inorganic platelets dispersed in a soft (elas-
tomeric) matrix] show almost no difference. This is due to
the fact that at these values of E,, the part of the E/E, ratio
which depends on E; is insignificant compared to the part
which does not. These results also imply that, so long as
there is enough adhesion to transfer a load, the presence of
an even softer material (such as an organocation) instead of
a polymer in the interlayer space of the stacks should not
make a qualitatively significant difference in the results. It is
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Fig. 3. Ratio of composite modulus to matrix modulus, f{E), as a function of number N of platelets in a typical stack, for s/t ratios of 1, 2, 3, and 4. The s/t ratio
represents the ratio of the distance between the platelets in a stack to the platelet thickness. For well-exfoliated platelets (N = 1), f{E) equals the results
obtained by using the continuum Halpin—Tsai equations. The eight graphs represent all possible combinations of the following parameters: (a) platelet volume
fraction, ¢, equal to 0.025 and 0.05; (b) platelet aspect ratio, Ay, equal to 100 and 200; and (c) ratio of platelet to matrix modulus, E;, equal to 100 and 100000.
Dashed reference lines corresponding to f{E) values calculated for platelets of aspect ratio 1 (cylinders with height = diameter) and 20 (as in conventional
unexfoliated platelet-shaped fillers such as talc or mica flakes) are also shown.

seen that increasing the number of platelets per stack does
very little to change E./E, after a large change from indi-
vidual platelets to two-platelet stacks. Increasing s/t makes
a larger difference, reflecting the incorporation of larger
amounts of the softer matrix material into platelet stacks.

Fig. 3 shows the ratio of the composite modulus to the
matrix modulus, f(E), as a function of the number N of plate-
lets in a typical stack, for s/t ratios of 1, 2, 3, and 4. The s/¢ ratio
represents the ratio of the distance between the platelets in a
stack to the platelet thickness. For well-exfoliated platelets
(N =1), f(E) equals the results obtained by using the
continuum Halpin—Tsai equations. The eight graphs of
Fig. 3 represent all possible combinations of the following
parameters: (a) platelet volume fraction, ¢, equal to 0.025
and 0.05; (b) platelet aspect ratio, A, equal to 100 and 200;
and (c) ratio of platelet to matrix modulus, E;, equal to 100 and
100 000. Dashed reference lines corresponding to the f(E)
values calculated for platelets of aspect ratio 1 (cylinders
with height = diameter) and 20 (as in conventional unexfo-
liated platelet-shaped fillers such as talc or mica flakes) are
also shown. A striking aspect of the results shown in Fig. 3, the

weak dependence on s/t, is somewhat surprising since it was
shown in Fig. 2 that all the terms of the Halpin—Tsai equations
are affected significantly by s/z.

4. Prediction of effects of off-plane deviations of platelet
orientation on tensile modulus

4.1. Earlier version of model used for micromechanical
calculations

Within Dow, the program used to compute elastic moduli of
a reinforced (filled) material is called LITAC'. It uses infor-
mation about filler and matrix moduli, filler geometry, and
orientation to compute composite properties with the

! The original version of LITAC was developed by Professor Charles L.
Tucker from the University of Illinois in Urbana-Champaign and Dr
Randy S. Bay (at the time a graduate student of Professor Tucker) in a
cooperative research project funded by Dow to acquire the capability to
predict the thermoelastic properties of composites. The software was
accompanied by a Theory Manual and a User’s Manual providing extensive
documentation about the methods and the software.
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Fig. 3.

Halpin—Tsai equations [25,26]. It can be used to calculate
composite properties in any chosen direction, for filler orien-
tations described by any given distribution function. In order to
do these calculations, however, LITAC relies on property
calculations for perfectly aligned rod-shaped or disk-shaped
particles. To fully describe the material response (and thus to
be able to calculate the composite properties in any given
direction), five independent elastic constants are required.
The five elastic constants calculated by LITAC are the
Young’s modulus for applied stress parallel and orthogonal
to the particle symmetry axis, the shear modulus for stresses in
planes containing and orthogonal to the particle symmetry
axis, and the Poisson’s ratio for stress parallel to the particle
symmetry axis.

LITAC calculations for rod-shaped particles follow fairly
well-established formulas. However, for disk-shaped parti-
cles, LITAC has two independent estimation methods, one
for very low aspect ratio particles, and another, which can be
applied to a broad range of aspect ratios. The two methods can
lead to very different results for the Young’s modulus for stress
parallel to the particle symmetry axis. We will now develop a
way to unify the LITAC computations for a material rein-
forced with disk-shaped particles. We then apply the new
method to determining the moduli of typical nanocompsite
reinforced materials, as a function of the orientation of the

f(E) vs N for various sA; at E.=100000, ¢=.05, A=100

(g)

f(E) vs N for various s/t; at E;=100000, ¢=.05, A=200

(continued)

nanocomposite filler particles. In this section, the aspect
ratio of a cylindrical particle will be defined as (height/
diameter), so that it will be >1 for rod-shaped fillers but <1
for disk-shaped fillers.

A material reinforced by perfectly aligned rod or disk
shaped particles exhibits composite elastic properties which
vary, depending on the orientation of the applied stress.
Because of the alignment of the particles and their symmetry,
however, the compliance tensor contains only five indepen-
dent components. The compliance matrix, S (a standard way to
relate strain to stress; see Ref. [25] and footnote 1 for a
complete description of the notation, and the relationships
between stiffness and compliance matrices and tensors), can
be expressed in terms of five independent elastic constants, E},
E,, Gy, Gy and vy, as follows:

g1 €11
(25 €22
033 €33
eSo, o= , €=
023 263
031 2e3
L 02 | 2€),
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Fig. 4. For shear modulus in the 1-2 or 1-3 plane, LITAC uses the Halpin—
Tsai formula. As aspect ratio approaches zero, its results approach the
infinitely thin disk solution for G|,. A representative plot is shown; for ¢ =
0.025, E, = 100, and v, = vy = 0.4.

1 — —
L Y12 Y12 0 0 0
E, E, E,
— 1 —
Y12 L V23 0 0 0
E, E, E,
— — 1
EV12 EV23 = 0 0 0
g— 1 2 2 1 ’
0 0 0 —_— 0 0
Gy
1
0 0 0 0 — 0
G
0 0 0 0 0 !
| Gy
E,

Gpy= — 2+ .
B7T21+ vy)

An examination of the compliance matrix shows that the
‘1’ direction is special: this is the direction in which the
symmetry axis of the particle points. Rather than three inde-
pendent shear moduli, there are only two: one for shear
stress in the plane containing the particle symmetry axis
(Gyy), one for shear stress in the plane orthogonal to it
(Gy). The Young’s modulus shows similar symmetry:
there are two independent values, one for normal stress
along the particle symmetry axis (E;), and another for
normal stress orthogonal to the particle symmetry axis (E,).

4.2. Rod-shaped particles (fibers)

For rod-shaped particles, LITAC follows the Halpin—Tsai
equations to calculate the five elastic constants. The
Young’s moduli are calculated using:

s B
1_77(1), Er+§

with & = 2A; = 2 length/diameter for Young’s modulus

E =

along the particle symmetry axis (E;), and &=2 for
Young’s modulus orthogonal to the symmetry axis (E,). In
these equations, E; is the ratio of the Young’s modulus for
the filler to Young’s modulus for the matrix, and ¢ is the
volume fraction filler.

The shear moduli are:

1+
G, = L &
L —n¢

where G, is the ratio of the shear modulus for the filler to the
shear modulus for the matrix; and & = 1 for shear in the 1-3
or 1-2 planes, and

_Gr—l
Koy

K,
E
g= O g Em
K 3(1 — 2v,)
- 4+2
Gn

for shear in the 2-3 plane.
Finally, LITAC uses a simple mixing rule to estimate v ,:

v, = ¢y + (1 — Py,

This mixing rule is used by Halpin and Tsai as an approx-
imation during the derivation of their formulas for E|, E,,
G]Z, and G23.

It is interesting to examine these calculations in the limit
of spherical particles. In this limit the composite is isotropic
and the following must be true: E; = E, = E, G, = Gy3 =
G, v, = v, and G = E/2/(1 + v). The first relation, E; =
E, = E, is satisfied by the LITAC formulas. The last three
relations give three possible ways of calculating G for the
composite: using the formula for G,, the formula for G,3, or
the formulas for £ and v,. Carrying out several example
calculations shows that although the G calculated by the
three methods is different, the difference is small. For exam-
ple, for ¢ =0.025, E. = 100, and v, = vy =04; G, =
G,/G, = 1.05, G, = Gp/G, = 1.04, and G, =
ERIA + v)/G, = 1.07.

4.3. Disk-shaped particles (platelets)

For disk-shaped particles, LITAC includes two options:
one for infinitely thin disks, and one for disks of finite aspect
ratio. The option for infinitely thin disks uses the results
from a micromechanics-based solution. The option for
disks of finite aspect ratio pieces together a number of differ-
ent results. Each elastic constant will now be examined.

For shear modulus in the 1-2 or 1-3 plane, LITAC uses
the Halpin—Tsai formula:

1+ éng G, —1
Gp=—"<-"-, nN= Tz

1 —n¢ G +¢
= 2( th.ickness) "732'

diameter

As aspect ratio approaches zero, this formula gives results
which approach the infinitely thin disk solution for Gj,. A
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Fig. 5. For shear modulus in the 2-3 plane, LITAC reverses the thickness/
diameter ratio in the equation for Gy,. This gives the usual Halpin—Tsai
result for spherical particles (where the composite is isotropic, so
Gy3 = Gy,), and also approaches the infinitely thin disk solution as aspect
ratio approaches zero. A representative plot is shown, using the same para-
meters as in Fig. 4.

representative plot is shown in Fig. 4, for ¢ = 0.025, E, =
100, and v, = »; = 0.4.

Fig. 4 shows that there is some irregular behavior near
aspect ratio 1 (spheres), but considering the slow variation
in Gy, (0.366—0.375 over the entire range of aspect ratios), it
was not considered necessary to correct this.

For shear modulus in the 2—3 plane, LITAC does not use
the usual recommended Halpin—Tsai formula [26], but
simply reverses the thickness/diameter ratio in the equation
for Gy,. This gives the usual Halpin—Tsai result for spherical
particles (where the composite is isotropic, so Go3 = Gy,),
and also approaches the infinitely thin disk solution as
aspect ratio approaches zero. A representative plot is
shown in Fig. 5, using the same parameters as in Fig. 4.
There is a slight discontinuity at aspect ratio 1 (spheres)
caused by the fact that the LITAC formulas for disks give
G,; = Gy, in the sphere limit, while the LITAC formulas
for rods (as discussed above) do not.
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Fig. 6. For Young’s modulus orthogonal to the particle symmetry axis (E,),
LITAC uses the recommended Halpin—Tsai equation. For aspect ratios
which approach zero, this formula gives results which are exactly equal
to the infinitely thin disk solution, provided that Poisson’s ratio for the
matrix is equal to that for the filler. If the Poisson’s ratios are not equal,
the limit is close to but not exactly equal to the thin disk solution. The
results of this calculation are shown, using the same parameters as in Fig. 4
except that Poisson’s ratio for the filler was decreased from 0.4 to 0.3 to
illustrate the small magnitude of the discrepancy between the Halpin—Tsai
and thin-disk solutions.
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Fig. 7. E5/E aix Over the full disk—sphere—rod range of aspect ratios, as
calculated by the Halpin—Tsai equations, and as modified by LITAC to
honor the infinitely thin disk solution. Parameters for this plot are the
same as those for Fig. 4.

For Young’s modulus orthogonal to the particle symme-
try axis (E;), LITAC uses the recommended Halpin—Tsai
equation:

1+ éng E.—1
Ey=——t M= ;
I —né E . +¢§
= 2 diameter
~ A;  thickness’

For aspect ratios which approach zero, this formula gives
results which are exactly equal to, the infinitely thin disk
solution, provided that Poisson’s ratio for the matrix is equal
to that for the filler. If the Poisson’s ratios are not equal, the
limit is close to but not exactly equal to the thin disk solu-
tion. The results of this calculation are shown in Fig. 6,
using the same parameters as in Fig. 4 except that Poisson’s
ratio for the filler was decreased from 0.4 to 0.3 to illustrate
the small magnitude of the discrepancy between the
Halpin—Tsai and thin-disk solutions.

For Young’s modulus along the particle symmetry axis
(E}), Halpin [26] recommends that the equation for E, be
used, with & set to 2. This results in a Young’s modulus
equal to that for spheres, regardless of the aspect ratio of the
reinforcing particles. LITAC does not implement this
recommendation, because it leads to large disagreements
with the infinitely thin disk solution. In an effort to honor
both the Halpin—Tsai equation for spheres, and the analyti-
cal solution for infinitely thin disks, LITAC uses the square
of the particle aspect ratio to interpolate between these two
limits.

Fig. 7 shows E,/E..ix over the full disk—sphere—rod
range of aspect ratios, as calculated by the Halpin—Tsai
equations, and as modified by LITAC to honor the infinitely
thin disk solution. Parameters for this plot are the same as
those for Fig. 4. A weakness in the LITAC calculation for E,
is seen: the method of interpolation between the sphere limit
and the infinitely thin disk limit leads to non-smooth results
in the region near spheres. While we don’t expect exact
symmetry, we should expect smoother behavior than this.
Why is this important? The method of interpolation can lead
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Fig. 8. To calculate v,, LITAC assumes that v,; can be approximated by
the rule of mixtures over the whole range of aspect ratios, then uses the
identity E, vy, = E; 1, together with calculated values for E; and E,. The
results of this calculation are shown, using the same parameters as in Fig. 4.

to substantial differences in the modulus for the aspect ratios
in which we are interested.

To calculate v|,, LITAC assumes that v, can be approxi-
mated by the rule of mixtures over the whole range of aspect
ratios (based on the fact that it is a pretty good approxima-
tion for both spheres and infinitely thin disks), then uses the
identity E,v;, = E v, together with calculated values for
E; and E,. The results of this calculation are shown in Fig. 8,
using the same parameters as in Fig. 4. Fig. 8 shows that the
LITAC calculation for vy, suffers from the interpolation
procedure which caused irregular behavior in E;.

In the limit of spherical particles, E; = E,, s0 vj; = 1y,
and both are given by the assumed rule of mixtures, which
agrees with the LITAC result for rods. As before with rods,
it is possible to check the isotropic identity G = E/2/(1 + v)
is satisfied in the sphere limit. Again the results for calculat-
ing G from the LITAC formulas for v, and E are close, but
not quite equal, to those calculated from the formulae for
G 12 and G23.

4.4. Refinements needed for disk-shaped particles in earlier
version of model

Reviewing the figures showing the LITAC calculation
results, the following is clear:

Ecomposite/Ematrix
Ve

0.00001 0.0001 0.001
Aspect Ratio

Fig. 9. The refined equation for E, is plotted for low aspect ratios, showing
that it correctly reaches the infinitely thin disk solution.

e The LITAC results for the shear moduli provide reason-
able ways of interpolating between the known limits for
spheres and infinitely thin disks (which are not that far
apart to begin with).

e The LITAC calculation for E, needs some minor repair to
make it agree with the thin disk solution.

e The LITAC calculation for E; needs major surgery to
provide a better method of interpolation between the
known limits.

e The LITAC calculation for v, needs a reasonable input
for E|, in order to provide reasonable results.

4.5. Refinements in E, calculation for disk-shaped particles

Because the high aspect ratio limit of the Halpin—Tsai
equation for E, is so close to the micromechanics solution
for infinitely thin disks, it is safe to assume that the Halpin—
Tsai equation captures the aspect ratio dependence. All that
is necessary is to adjust the limiting behavior slightly, so
that the solutions will match. To accomplish this, consider

the following identity:
Ey(Ap) — Ex(1)  _ Ey(Ap) — Ex(D)

Ex(1/00) — Ex(1) — Ep(1/00) — Ex(1)

which can be rearranged to

Ex(Ap) — Ex(1) ]

E>(Ap) = E5(1) + [Ey(1/00) — Ez(l)][ Ey(1/00) — Ey(1)

= E,(1) + [E,(1/00) — E,(1)] X INTERP2

The quantity on the left-hand side of the equation is the
thing were trying to calculate, E, as a function of aspect
ratio, Ar. On the right-hand side, the quantities E,(1/00)
and E,(1) are the known solutions for infinitely thin disks
and spheres, respectively. The last quantity in square brack-
ets can be viewed as an interpolating function, call it
INTERP?2; in our case, if we use the Halpin—Tsai calculation
for E, to compute all the terms in this function, we will
produce an equation that behaves like the Halpin—Tsai
equation, but approaches the infinitely thin disk result
instead of the Halpin—Tsai limit, as aspect ratio approaches
1/00. When the Halpin—Tsai results are substituted into the
formula for INTERP2, the result is:

§-2 ]
INTERP2 = [ ,
E - D1 -+
E, = Efijjer , £= 2 _ 5 di.ameter -
Ematrix A f thickness

So the equation for estimating E, for disk shaped filler
particles becomes:

E5(Ag) = Ex(1) + [Ex(1/00) — Ex(1)]

{@=m-wravsl
E-D0-d+T+8 ]
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Fig. 10. The behavior of the interpolation functions INTERP1 and
INTERP2.

where, as before E,(1/00) is the solution for infinitely thin
disks, and E, (1) is the solution for spheres. This equation for
E, is plotted for low aspect ratios in Fig. 9, showing that it
correctly reaches the infinitely thin disk solution.

4.6. Refinements in E; calculation for disk-shaped particles

In calculating E;, the LITAC concept of interpolating
between well-known solutions is a good one; we just need
to find a better method of interpolation. To see what we are
after, consider the following identity:

E(A) — E() _ EAp) — E(1)
E\(1/00) — E\(1)  E(1/00) — E(1)

which can be rearranged to

E (Ay) — E (1
ama=EMJ+wmmm—Emm[ 1(4o) “)]

Ej(1/00) — Ey(1)
— E,(1) + [E,(1/00) — E;(1)] X INTERP1

The quantity on the left-hand side of the equation is our
unknown. On the right-hand side, the quantities E;(1/00) and
E (1) are the known solutions for infinitely thin disks and
spheres, respectively. The last quantity in square brackets
can be viewed as an interpolating function, call it INTERP1:
we need to find a function that behaves similarly as aspect
ratio decreases from / to 1/c.

How can we do this? If we knew the behavior of
INTERP1, then we wouldn’t need to find something to
approximate it, because we’d already have the answer to
our problem! We used one approach in adjusting the limit-
ing behavior of E, above: we used the Halpin—Tsai equa-
tions for E, to interpolate between the known solutions for
spheres and infinitely thin disks. For E, it is not possible to
do this, because the Halpin—Tsai equations predict no aspect
ratio dependence for E;. Another approach is to find a class
of problems for which we do know the behavior of
INTERP1, then find a good approximation for INTERP1
which can be calculated under all conditions.

Where can we find a class of problems that allows solu-
tion for INTERP1? In the limit of low volume fraction, for

rigid ellipsoidal fillers of all aspect ratios, [27] shows how to
compute the matrix deformation at all points in space for a
linear applied strain field. We can use this solution to
compute effective moduli for the composite materials. The
details of this computation are extremely complex and are
shown in Appendix C. Two highlights from these results
follow:

1. The solution is known to be valid only in the regime of
very low volume fraction. How low is low? It depends on
the aspect ratio of the filler particles. As particle aspect
ratio increases, the cutoff volume fraction decreases. To
ensure that we are examining only the aspect ratio contri-
bution, it is necessary to examine the behavior of the
following quantity, rather than E| itself:

E, — E
[El] = lim ( 1 matrix )
¢—0 ¢

2. Since the solution is for completely rigid fillers, [E;] does
not approach a finite value as aspect ratio gets very large.
The limiting behavior is an asymptotic approach to 1/A;.
In order to have a meaningful computation of INTERP1,
it is necessary to scale out the asymptotic behavior by
dividing by the asymptote. The resulting quantity then
measures the rate of approach to the high aspect ratio
asymptote, which is what we want.

This is half of the story. The other half is finding a useful
approximation for INTERP1. Without going into the details
of the search, here is the result:

Ei(Ap) — E((D) ] — [ Ey(Ap) — Ex(1) ]
E(1/00) — Ey(1) | | E5(1/00) — Ex(1)

INTERP1 = [

= INTERP2

The behavior of INTERP1 and INTERP? is shown in Fig.
10. It can be seen that INTERP1 and INTERP?2 differ by less
than 10% over the range of interest, which makes INTERP?2
a good candidate to replace INTERP1. INTERP2 can also be
calculated in the more general case, from the appropriate
Halpin—Tsai equations. When the Halpin—Tsai results are
substituted into the formula for INTERP2, the result is:

£E-2 ]
INTERP2 = [ ,
E-DA - +d+ 9
E, = Efijter ’ £= i _ di.ameter .
Ematrix Af thickness

So the equation for estimating E; for disk-shaped filler
particles becomes:

E\(Ap) = E (1) + [E (1/00) — Ey(1)]

=i —oravel
E-DI-p+a+8]
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Fig. 11. Refined predictions for E; with E, = 100, with a Poisson’s ratio of
0.4 for both matrix and filler, and a filler volume fraction of 0.025.

where, as before E|(1/00) is the solution for infinitely thin
disks, and E;(1) is the solution for spheres. Fig. 11 shows
the refined predictions for E; with E, = 100, a Poisson’s
ratio of 0.4 for both matrix and filler, and a filler volume
fraction of 0.025. This figure clearly demonstrates that
revising the method of interpolation removes the irregular
behavior of E| in the neighborhood of spherical particles.

4.7. Refinements in v, calculation for disk-shaped particles

Using the LITAC procedure for calculating v, with the
refined procedures described above for calculating £ and E,
yields quite reasonable results, as shown in Fig. 12.

4.8. Examples

We used the equations developed above to predict
Young’s modulus as a function of the angle between the
applied normal stress and the symmetry axis of the platelets.
The results of these calculations will now be shown as plots
of the ratio of composite Young’s modulus to matrix
Young’s modulus, as a function of orientation angle, for
four different aspect ratios. Fig. 13 is for E, = 100, Fig.
14 is for E. = 100000. In both figures, ¢ = 0.025, and
Poisson’s ratio of both matrix and filler was set to 0.4.
Using these new results for elastic constants, we are able
to predict the response of Young’s modulus of a nanocom-

AuTZ_LITAC
————nut2_new

nu_composite
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Fig. 12. It is shown that using the LITAC procedure for calculating v, with
the refined procedures for calculating E; and E, yields quite reasonable
results.

posite material to changes in the direction of the applied
normal stress. The results show that (a) platelet orientation
has a significant effect on Young’s modulus, and (b) a mini-
mum value of Young’s modulus exists when the particle
symmetry axis is about 40° away from the applied normal
stress.

5. Discussion

Many books provide detailed and general background
information on composite theory. In our opinion, most nota-
ble are the books of Nemat-Nasser and Hori [28] for its
mathematical thoroughness and of Christensen [29] for its
emphasis on the engineering aspects. An article by Tucker et
al. [30] with emphasis on the internally consistent combina-
tion of a set of judiciously chosen techniques to predict the
thermoelastic properties of a wide variety of composites,
and the review articles by Ahmed and Jones [31] and
Chow [32], provide concise descriptions of models and
are recommended to readers interested in relatively brief
discussions of several popular models. The thermoelastic
properties of platelet-reinforced composites were also
addressed in an important manuscript by Christensen [33].

While there is an obvious need for work on the mechanics
of nanocomposites, the reader may ask whether continuum
mechanics can be applied successfully to materials of such
dimensions. Analytical expressions for thermoelastic prop-
erties have the advantage of simplicity, but the disadvantage
of being generally based on idealized representations of the
morphology. It is impossible to use such expressions to
predict the full range of variations possible in the thermo-
elastic properties as a function of the morphology. To be
able to use modeling in designing composites with the same
confidence as a civil engineer uses calculations to design
buildings, the property prediction models must ultimately be
able to predict the effects of subtle variations in morphol-
ogy, such as between models that can be extracted by the
automatic meshing of different two-dimensional electron
micrographs [34] or predicted by using the recently devel-
oped mesoscale simulation methods.

As Vaia and Giannelis [35] emphasized, nanocomposites
differ from conventional composites because of their vast
interfacial areas per unit volume and the nanoscopic dimen-
sions between the nanoelements. The presence of many
chains at interfaces means that much of the polymer is really
‘interphase-like’ instead of having bulk-like properties.
Furthermore, polymer chains are quite often confined
between the surfaces of nanoplatelets, which are closer to
each other than the radius of gyration of a chain. Both adja-
cency to a nanoplatelet surface and confinement between
such surfaces clearly modify the thermodynamics of poly-
mer chain conformations and the kinetics of chain motions.
These two factors may potentially also modify the effective
mechanical properties of the polymer. Such modifications
could affect the mechanical properties of the nanocomposite
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Fig. 13. Young’s modulus as a function of the angle between the applied
normal stress and the symmetry axis of the platelets, as the ratio of compo-
site Young’s modulus to matrix Young’s modulus, as a function of orienta-
tion angle, for four different aspect ratios, with ¢ = 0.025, Poisson’s ratio
of both matrix and filler set to 0.4, and E, = 100.

in ways that are not yet fully understood and perhaps not
representable completely adequately by analytical expres-
sions based on continuum mechanics.

Another relevant consideration is that the analytical
expressions of micromechanics are generally most accurate
at low volume fractions of the ‘filler’ phase. The details of
the morphology become increasingly more important at
higher volume fractions. This fact was illustrated by Bush
[36] with boundary element simulations of the elastic prop-
erties of particulate-reinforced and whisker-reinforced
composites. The volume fraction at which such details
become more important decreases with increasing filler
anisotropy, as was shown by Fredrickson and Bicerano
[37] in the context of analytical models for nanocomposite
permeability.

Termonia [38] developed a stochastic simulation
approach to describe the factors controlling the mechanical
properties of short fiber-reinforced composites with variable
fiber orientation. His method takes the testing conditions
(temperature and deformation rate) into account explicitly
within the framework of the kinetic theory of fracture. It
thus allows not only the calculation of the elastic properties
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Fig. 14. Young’s modulus as a function of the angle between the applied
normal stress and the symmetry axis of the platelets, as the ratio of compo-
site Young’s modulus to matrix Young’s modulus, as a function of orienta-
tion angle, for four different aspect ratios, with ¢ = 0.025, Poisson’s ratio
of both matrix and filler set to 0.4, and E, = 100000.

of composites but also the calculation of their complete
stress—strain curves up to fracture. The main difficulty
with its detailed and fully predictive use for designing
new materials is in the estimation of the activation energies
and activation volumes which are used as input parameters.

Gusev [39,40] developed a generic finite element simula-
tion method for predicting the thermoelastic and transport
properties of multiphase materials comprised of anisotropic
phases which can be shaped and oriented arbitrarily. Exam-
ples of applications of this method have been published for
the moduli, coefficients of thermal expansion and dielectric
constants of composites with polymeric matrices. Some of
the results obtained by using his method (the prediction
of much larger potential improvements in the properties
of nanocomposites at high nanofiller aspect ratios, and the
prediction of three-body effects in the reinforcement in
some composites) differ qualitatively from results predicted
with analytical expressions. However, these predictions
from the numerical simulations will need to be validated
with experiments on carefully prepared and well-character-
ized composite specimens in the future, before the method
can be considered to have been fully tested.

The foregoing discussion should make it clear that the
analytical expressions of continuum mechanics must be
used with caution for nanocomposites. Nonetheless, given
the ease and convenience of using such expressions, and the
fact that they will continue to be used routinely in practical
work whenever quick first estimates of composite behavior
are needed, it is important to continue improving such meth-
ods. The work reported in this manuscript provides signifi-
cant improvements compared with existing methods in the
ability to predict nanocomposite elastic behavior. It has
helped practical experimental work on nanocomposite
development by providing semiquantitative estimates of
what to expect as well as by elucidating the relative impor-
tance of various factors in determining the deviations of the
observed reinforcement from its ideal limits. On the other
hand, a detailed quantitative comparison with experimental
data has been difficult thus far because of the great complex-
ity of nanocomposite morphology and the resulting chal-
lenges to its precise characterization in terms of the
morphological features sed in the model. Work is in
progress in our group to analyze some of the same aspects
of nanocomposite elastic behavior with numerical simula-
tions using commercially available software implementing
Gusev’s method.

6. Summary and conclusions

This paper addressed three important aspects, neglected
in all previous literature, of the micromechanics of nano-
composites reinforced by platelet-shaped fillers:

¢ A model was developed to predict the buckling of plate-
let-shaped high aspect ratio filler particles in reinforced
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Fig. 15. Schematic representation of undeformed and one possible
deformed configuration for a composite under compression.

materials under compressive loading. It predicts a critical
strain above which platelet buckling, and hence a reduc-
tion in the compressive modulus relative to the tensile
modulus, is expected to occur. A simple formula for the
critical strain was developed. This formula was used in
calculations on a typical polypropylene nanocomposite,
for which the critical strain was seen to be sufficiently
high for the compressive modulus not to be reduced rela-
tive to the tensile modulus.

e A model was developed to account for the reduction of
the reinforcement efficiency of clay platelets of high
aspect ratio in a polymer matrix as a result of the incom-
plete exfoliation of platelets into ‘pseudoparticle’ stacks
containing polymer layers sandwiched between succes-
sive clay platelet layers rather than into individual
perfectly exfoliated and well-dispersed platelets. Such
stacks have a lower effective aspect ratio and a lower
effective Young’s modulus than the completely exfo-
liated platelets, with these two detrimental effects being
only partially contravened by their higher effective
volume fractions. It was shown by detailed calculations
that incomplete exfoliation has a very significant detri-
mental effect on the reinforcement efficiency.

e Incomplete exfoliation is just one of the two separate
important effects which, in combination, lower the rein-
forcement efficiency observed in typical nanocomposites
significantly relative to the ultimate theoretical limits. A
model was also developed for the other important effect,
which is the deviation of the platelet orientation from
perfect biaxial in-plane. It was shown by detailed calcu-
lations that the deviation of the platelet orientation from
perfect biaxial in-plane also has a very significant detri-
mental effect on the reinforcement efficiency.
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Appendix A. Critical strain for onset of buckling during
compression

In calculating the critical strain, we assumed that no
energy is stored via bending of filler particles. This gives
a lower limit for the critical strain (If it becomes important
to estimate the critical strain more accurately, it is possible
to include the effects of filler stiffness via additional terms in
the strain energy function.). With this assumption, the strain
energy per unit volume in the filler is simply computed from
the filler compressive strain:

_ 1 2
Usitier = 75 Efitter€filier»

where ug, is the strain energy per unit volume of filler,
Egjier the compressive modulus of the filler, and e, is the
compressive strain in the filler.

The strain energy in the matrix is computed from two
strain fields; namely, the uniform compressive strain and
the shear strain produced by the filler buckling. The strain
energy from pure compression of the matrix is:

2

— 1
Umatrix,compression — jEmatrixematrix

WhEre Umauix compression 18 the strain energy per unit volume of
matriX, E..ix the compressive modulus of the matrix, and
emanix 18 the compressive strain in the matrix. The strain
energy from the shear strain in the matrix, produced by filler
buckling is:

_1 V2
- EGmatrix matrix

where Upyixshear 1S the strain energy per unit volume of
matriX, Gpagix the shear modulus of the matrix, and yauix
is the shear strain in the matrix due to filler buckling.
Buckling is assumed to follow a sinusoidal pattern, with a
wavelength parameter A which takes on whatever value
necessary to minimize strain energy.

In order to evaluate the terms of the strain energy func-
tion, the compressive strain in the matrix and filler must be
related to the amount of buckling in the filler, and the shear
strain in the matrix must be computed. In the matrix, defor-
mation normal to the platelets is given by the equation:

Umatrix,shear

y=Y+d, = Y+Asin<27TX>,

where y is a post-deformation coordinate; X and Y are pre-
deformation coordinates; and A and A are the amplitude and
wavelength of the buckling. Fig. 15 shows a schematic of
one possible mode of deformation, where the wavelength is
twice the length of the filler. The only non-zero shear strain
is given by:

_adX+6d),_0+(27TA) (ZWX)
Yo = Ty T ax T x )\ )

because the X and Z deformations depend only on X and Z,
respectively.
To relate the amplitude of the buckling to the compressive
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strain in the matrix and filler, let L, be the original length of
the filler, and L4 be the deformed filler length. Then the
observation that the difference between the undeformed
filler length and the deformed filler length equals the
compressive deformation becomes:

Ly — Lyer = —efinerLos
or

Lo(1 + efiner) = Laer

L0+L()emalrix 2 A 2 2
= (Y o (2

where the deformed filler length has been expressed using
the standard formula for path length. Changing variables to
a= 2)\&, and using the identity An = Ly(1 + e,,4ix), the
right hand side becomes:

A 2nr 2m7A 2
(—)J 1+(L> cos’a da
27 ) Jo A
4nA 2 27A \?
(%)H (22 cortada

where p = (2mA)/A via Eq. 2.614 of Ref. [24] and E is the
elliptic integral of the second kind. Putting the right and left
sides back together and eliminating » in favor of Ly,

LO(I + ematrix)
/2

TP
AN

Expressing the terms involving p as a power series yields:

Lo(1 + efiper) = 1+ sz(

2 4
p 14
1 + efjer = (1 + emamx)(l + o I)

X 1 — p2 — 3p4 e
41+p>H 641 +pH? )
which gives to leading order,

p2 A \?
€filler — €matrix — Z = T .

Note that since egy, and ep..ix are small, the leading
order approximation is justified.

The resulting relationship between buckling and defor-
mation is:

A= A\/eﬁller ~ Cmatrix

w

E)

where A is the amplitude of the buckling, and A is its wave-

length. The shear strain in the matrix is:

27A 27X
Ymatrix = T Cos T >

where x is the coordinate along the direction of the compres-
sion. Substituting these results into the expression for
Umatrix,shear PrOduceS:

o 27mx
Umatrix,shear = 2Gmatrix(efiller - ematrix)cos A

To obtain the total strain energy in the composite, the
individual portions of the strain energy function are added
and integrated over the appropriate regions of the com-
posite:

umatrix,sheardv

Vmalrix

Utol = J umatrix,compressiondv + J
Vmalrix

+ J ufiller,compressiondv
Viitter

This produces the following total strain energy per unit
volume for the composite:

— 1 2
Uor = fEmatrixemaLrix(l - d))

| 2
+ Gratix(€fitler — €matrix)(1 = @) + 5 Efijier€iitier s

where ¢ is the volume fraction of filler particles. In the limit
of no filler buckling (epauix = €riner), this reduces to the
expected result for linear compression of the matrix and
filler. It is interesting to note that this expression is indepen-
dent of A, the assumed wavelength of the buckling.

To find the minimum energy condition at any given
observed strain, e,.ix, the derivative of u,, with respect to
esier can be set to zero. This results in:

e _ Gmatrix(1 - d’)
fi“er min — ~ -~ 4
’ Eijier ¢

:(Ematrix)( 1 )(1_¢)
Efiller 2(1 + Vmatrix) ¢

When the overall observed strain, ep,qix, 18 greater than
the value calculated by using this expression for eger min, this
expression predicts the amount of filler strain, and thus the
amount of filler buckling. When the overall observed strain,
€marix» 15 sSmaller than the value calculated by using this
expression for egermin, NO filler buckling occurs since it
would be physically unreasonable for the filler strain to be
greater than the overall observed strain. When (epayix =
€filler.min = €crit), @ critical strain is reached at which filler
buckling will start to occur; this is an expression for that
critical strain.

Appendix B. Calculation of reinforcement due to stacks
of platelets

The aspect ratio of the platelet stack can be evaluated
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simply from the geometry: in each platelet stack, there are N
platelet layers, and (N — 1) inter-platelet layers. If we let L
be the long dimension of the platelet, # be the short dimen-
sion (thickness) of the platelet, and s be the inter-platelet
spacing, then

, L B L
- -
NEFN =D N1+ (1= 1))

_Ap 1
Nli1+a- 1/N);
The volume fraction of the platelet stacks in the matrix

can also be simply evaluated from the geometry:
V.

d) /I platelet-stacks

Vplatelet—stacks + Voutside—platelet—stucks

Vplatelets + Vinter—platelets

(Vplalelets + Vinter—platelels) + (Vmatrix - Vinter—plalelels)

d)/ _ Vplatelets

Vplatelets + Vmatrix Vplatelets + Vmatrix

Vinter-platelets

_ ¢ + Vinter—platelets
Vv

platelets + Vmatrix

s

ands IlOtiIlg that Vmatrix = platelets(1/¢ - 1)5

Vinterfplalelets
Vplalelets + Vplatelels(lld) Y

— ¢+ d)vinter—Platelets =ol1+ (N — I)SLZ
Vplatelets Ni th '

o =+

¢ =1+ (1 — 1/N);)

The ratio of the modulus of the platelet stacks to that of
the matrix can be calculated using the geometry of the plate-
let stacks; and a result from the theory of composites,
namely, the effective modulus of a continuously reinforced
composite beam:

Eplatelel—slacks Vplatelet—stacks

= plate]etsvplatelets + Ematrix Vinter—plale]ets’

Eplatelel—slacks (Nt + (N — D))

= Eplatelets(Nt) + Enarix((N — 1Ds),

Eplatelel—slacks

E =
! Emalrix
— (Eplatelets )( Nt ) + (N - 1)S
Emalrix Nt + (N - 1)5 Nt + (N - I)S’

: (1 —1n°2
E/=E, |+ !
L+ (=N

1+ - 1/N)§'

Putting all the above results together results in the follow-
ing set of equations to predict the composite modulus of an
incompletely exfoliated material:

Ecomposite _ 1+ ZA/fn/(b, r_ E/r -1
Emalrix 1= 77/(;[)/ ' E{' + 2Alf '
Ag 1
1+ - l/N);

¢/ = o1+ (1~ UN)>),
S
1—1/N)-
1 ( )

E,=E |+ -
1+(1—1/N); 1+(1—1/N);

In addition to the parameters of the ‘fully exfoliated’
Halpin—Tsai equations, these equations introduce two new
parameters: N, the number of platelets in a stack, and s/¢, the
ratio of the spacing between platelets in a stack to the thick-
ness of a platelet.

We would like these equations to reproduce the results of
the familiar ‘continuum’ version of the Halpin—Tsai equa-
tions in a number of limits.

e When N = 1, there is only one platelet in a stack. In this
case, a simple examination of the equations for A}, ¢,
and E! shows that they become A;, ¢, and E,, respec-
tively, thus recovering the continuum Halpin—Tsai
equations.

e When s/t = 0, there is no interplatelet layer, so qb' and E i
should be equal to ¢ and E, (they are); and A} and A,
should be related by a factor equal to the number of
layers (they are). Again, the continuum equation results
are recovered.

e There should be an upper limit for s/t which corresponds
to continuum behavior. At this upper limit, the modulus
enhancement predicted by the modified equations should
equal the modulus enhancement predicted by the conti-
nuum equations. From the geometry of the system, s/t in
this limit should be (1 — ¢)/¢. The equations above do
not demonstrate this limit because the concept of an
upper limit to ‘stacked’ behavior was not built into
their derivation (although in practice, the error is not
large, e.g. 4% at N = 5, ¢ = 0.025). The following para-
graphs detail a modification to the equations to make
them self-consistent over the whole range of s/t from 0

to (1 — d)p.

In comparing the modified Halpin—Tsai equations to the
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original continuum version, it is apparent that the modified
version approaches the continuum version as N gets close to
1. The simplest way to obtain the correct limiting behavior
for s/t, then, is to replace N with a quantity that approaches 1
as s/t approaches (1 — ¢)/¢p. The quantity must also, of
course, approach N at low s/t to maintain the right
limiting behavior at low s/z. In addition, to satisfy the first
limit in the bullet points above, the quantity must be identi-
cally equal to N (for all s/t), when N = 1. It is easy to verify
that the following replacement for N has all of these
properties:

N=N+d —N)(;)(%)

With this replacement for N, the complete set of equa-
tions becomes:

Ecomposite _ 1+ 2A;7]l¢/ r_ Elr -1
Ematrix 1 - ”’7"15/ ’ E{' + 2Afr ’
Ay 1
ti= s
N\1+a- 1/N)?
¢/ = g1 + (1= 1K),
(1— 1/1\7)?

E.=E,

1+ (11— 1/N)—)

B=n+a -5 )(Ld)

Appendix C. Aspect ratio dependence of E; and E, at low
volume fraction

1+(1— 1/1\7)%’

The Halpin—Tsai equations are based on micromechani-
cal solutions to the elasticity equations, where these equa-
tions are solved in three separate regions (one with filler
properties, one with matrix properties, and an outer one
with the composite properties). Matching boundary condi-
tions between the inner and outer regions provides a built-in
way to account for the effects of neighboring filler particles
on the local matrix—filler interaction, and thus accounting
for concentration effects. By contrast, in the continuum
method, the elasticity equations are solved in the matrix
and filler regions for the given matrix—filler geometry (i.e.
there is no ‘outer’ region, with composite properties) and
composite properties are then determined by a suitable
volume averaging process. It is easiest to apply the conti-
nuum method at very low volume fractions, because one can
then use the solution to the elasticity equations for a single
filler particle in an infinitely large matrix. When multiple
particles are introduced in an effort to account for finite

concentrations, the elasticity equations become much
more difficult to solve.

We wish to interpolate between the known micro-
mechanics solutions for E; for spheres and for infinitely
thin disks. Using the continuum approach will show us a
way to do this interpolation at low volume fractions, and we
will then extend the interpolation method to higher
volume fractions. There are two steps to the continuum
approach:

1. Find a solution to the elasticity equations. Fortunately, a
solution to the elasticity equations exists for a single rigid
ellipsoid in an infinite matrix [27]. The result will be
reproduced here to correct a number of typographical
eITors.

2. Volume-average the solution to find the composite prop-
erties. The averaging technique is fairly standard, and can
be found in many texts on elasticity, fluid mechanics, or
electrostatics. As was shown in Ref. [27], the quantity
which needs to be volume-averaged to find the compli-
ance tensor components, is the stresslet response to a
linear ambient deformation. The stresslet, S;, which
measures the matrix stress response to a strain field, is
the coefficient in front of the term

l( Siik = S )

2\ 167(1 — v,)G,, )’

in the solution for the deformation field (Note that in this
appendix, S stands for the stresslet, consistent with the
notation of Ref. [27]. In the main body of this paper, S
stands for the compliance matrix, consistent with the
notation in footnote 1). Here, Tsij,k stands for the deriva-
tive in the k direction of the ij component of the
fundamental (point force) solution to the elasticity
equations,

8; | XX
=C-4y— + —;
r r

v, is the matrix Poisson’s ratio; and G,, is the matrix
shear modulus. To put it another way, if one can find
an exact solution for the deformation field in response
to a linear ambient deformation, then cast the solution
into a form where one of the terms looks like

l( Sk — S )
2\ 1671 — v,)G,, )’
then the coefficients of that term, when volume

averaged, will yield the components of the compliance
tensor.

We will first state the solution of the elasticity equations.
For an ambient deformation field u = F~-x, the stresslet for
the rigid ellipsoid is in the form Sy = S‘ + ROy, where R
represents the isotropic, and S ik the dev1at0rlc parts of the
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stresslet Sy. R is given by:

sR = GabcFy;

87(1 — wy) 3dy + 25[(2 — ap)erg + 2BoBG + 27001 + 45 Bovo

+ G,,abcF3,

9 do + Sdl + S2d2

87(1 — wy) 3dy + 2512 — Bo)BG + 270 Y0 + 2apap] + 45> yoa

o S(1 — 3dy + 2s[(2
+Gmach33 77( Vm) 0 S[(

9 do + Sdl + S2d2

— Y0) Y0 + 200 + 2BoB0] + 45 oy

where s = 1 — 2v; a, b, and c are the axes of the ellipsoid,
do = agBo + BoYo + Yoo,

di = apag(By + %) + BoBolag + ¥0) + ¥ovo(en + Bo)
dy = 2ayBy Y0

and the a, B and vy, are elliptic integrals that will be
tabulated below.
The deviatoric parts of the stresslet are:

1l 700 1l 00
= BoF2n — YoF33

9 do + Sd] + Szdz

o = 2+ 2 B 4’ —r 10( 1 )
"Ta - - N\ S )

—3;2 2 +r 1

" I

_ _ ]

Bo= 7o = F_1F P~ og(r Y )

while for oblate spheroids (a = b > ¢, r = alc), the «, B

327(1 = v)Gmabe (1= 20)Q2BoYFT) — Yo@oF3) — aoBoF)

3 - 32m(1 — v,)Gabe 2a0FT
1=
9

_167(1 = v,)Gabe 2agag — BoBo —

do + Sdl + S2d2

9 do + Sdl + S2d2

YoYO)(FT1 + Fay + F33)

9 do + Sdl + S2d2

with the other on-diagonal components obtained by cycling
1—-2—3—1, a—=B—y—a and a—b—c—a.
The off-diagonal components are given by:

a + By ][Ff3+F§°1 ]

167(1 — v,)Gabc ;
Yo 2

312 =

3[a ay + BBy + 2(1 — 2v) 0'80]

with the other components again obtained by cycling.

In the equations given above, «, 8 and y are combina-
tions of elliptic integrals which can be simplified as follows
for prolate spheroids (a > b = ¢, r = alc):

_ 2r 1 2
RN P

r2

/3():‘}’0:r2_1 _(r

og ,
2 — 1) r—rr—1

dlal = 2r =5 3/ o ( 1 )
T ) T P VA

4 2 3
2 2, T F2r B 3r
d,B() a Yo = (r2_1)2 (rz_

1
I )
1)5/2 Og( r—vrr—1 )

and vy are:
P 1
—n _ J2 1y —
oy = By = 21 arctan(vr 1) o
2/? 212
Yo = o — A" arctan (vVr? — 1),

2 224+ 2 3t
= d’B) = 2 — 1) - 72— 1y"2

arctan (Vr? — 1),

5r7 =2 3t
20 [2 _
a vy, = 217 + 207 = 1)5/3 arctan (Vr 1),
—32 42
ah =By = R + = 1)5/2 arctan (V2 — 1),
' P42 I

arctan (Vr? — 1)

Once the terms of the stresslet have been computed, they
can be used to determine the compliance tensor for the
composite as follows. In a homogeneous deformation, the
effective stress tensor is

<UU> _ <O_matr1x> + <0_l:;;article>’

= +
Yo A2 —12 (2 - 1)5/2

where the angle brackets denote a volume average. The
stress contributed by the matrix is constant, and is given by

< matr1x> - /\mekkaij + Gm(eij + e-ji),
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Fig. 16. It is shown that the behaviors of [E;] and [E,] as a function of aspect
ratio are very similar.

where A, = 2v,G,)/(1 — 2v,). The particle-contributed
stress is given by

particley __ 1
(@) = 5 2. Sis
and since for low volume fraction we can treat each particle
in isolation,

- 1 N ¢ é

particle — —
ol =—N§=18;= S, = S,
< v > V Y V Y iparticle Y (4/3)nabc Y

with the S;; as given above. Putting the particle and matrix
contributions together allows us to pick off terms in the
fourth order stiffness tensor C which relates stress to strain
(o0 = Ce), because the strain is easily computed for this
particular deformation:

1{ du; ou; 1{ 0 d
= — L )= | —(F, + —(F,
€jj 2 ( axl axi ) 2 ( axl ( tk-xk) axi ( jkxk))

1
E(Fij + Fy) = Fj.

Taking as an example the Cj,, term,

C . <f712> . <f712>
1212 = =
€12 lother e=0 F12 other F=0
=G, + _ ¢ Se ,
(4/3)mabe F ;5 lother F=0
¢ 167(1 — vy,)Gabe
Cioir = Gy +
12127 5w T 4/3) rabe 3
ay + Bo ( 1 )
X 76 2
ey + 2By + 2(1 — 21, “"fg"
Yo

Cioin =Gy +2¢6(1 — vy)

ay + By
Yo
X G,
" 2 2 _ apfBo
a“ay + b7y +2(1 — 2vy,) —;
0

The above equations show how to calculate the 81 terms
of the fourth order stiffness tensor. Using formulas', these
81 terms can be converted into the 36 stiffness matrix and
compliance matrix components used.' For example, Cgq =
1/S¢6 = Ci21>. One minor note in the conversion process
is that the notation' assumes that the particle symmetry
axis is always parallel to the ‘1’ direction, while in Ref. [27]
it is parallel to the ‘1’ direction for prolate spheroids, and
the ‘3’ direction for oblate spheroids.

Our desire is to determine the behavior of the engineer-
ing constant E| as a function of aspect ratio, and to find a
suitable approximation for it. To help accomplish this,
Ref. [25] contains formulas for calculating the 5 indepen-
dent engineering constants from the 36 stiffness matrix
components (reproduced here to correct typographical
errors):

203
Ey=Cy — ﬁ,
n 1t Cx
C11Cy — Chy
Ey = (Cyp —Cp)| 1 + c oo )
1Cx 12
C
2 Gy3 = Cyy, Gy = Cs5 = Cgg

Vpp= ————,
PTG+ Oy

Some caution must, however, be exercised. Our solution
for the composite properties assumes dilute behavior. It is
very easy to get into the ‘non-dilute’ regime for high or low
aspect ratio particles. To ensure this does not happen, it is
more useful to plot so called ‘intrinsic’ properties, generic-
ally defined for the property P as follows:

[Pl =1li b
= ¢

composite P atrix

Using this definition, all of the stiffness matrix results can
be written in the form:

Cij — C;jpatrix + [CU]¢7

because all of the Cj; are linear in ¢. Computing the ‘intrin-
sic’ engineering constants then requires substituting the Cj;
into the appropriate formula. [E|], for example, equals:

[E/] = [C1] = 4¥n[Cial + 20(ICx] + [Ca3))

Even plotting these intrinsic properties can be misleading.
Since the filler particles are rigid, at high aspect ratios these
properties will approach infinity. Since we are interested
in the rate of approach to the high aspect ratio asymptote,
this asymptote was scaled out. The resulting quantities are
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plotted in Fig. 16. From this figure, it is clear that the
behaviors of [E|] and [E,] as a function of aspect ratio are
very similar. Constructing and plotting the interpolating
function

[ E.(Ap) — Ei(1) ]
E (1/00) — E,(1)

for both quantities shows that at low volume fraction, the
response of the interpolating functions based on [E;] and
[E,] to changes in aspect ratio is almost identical (this plot
is shown as Fig. 7 in the main body of the paper). We make
the assumption that this will hold at high volume fractions
as well, so that we can use the approximation:

E\(Ap) — E\ (D) ]
E,(1/00) — Ey(1)

2[ Ex(Ay) — Ex(1)
| Ex(1/00) = Ex(1)

INTERP1 = [

] = INTERP2
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